摘要
研究非线性差分方程 xn+ 1 =xnexp rn(1 - xn-k) / (1 +λxn-k) ,其中 { rn}是正实数列 ,λ∈(- 1 ,1 ) ,k为自然数。运用迭代方法 ,给出了保证其每一解 { xn}满足 limxn=1的若干充分条件 ,推广和改进了已有的结果。
Consider nonlinear delay difference equation x n+1 =x n exp r n(1-x n-k )/(1+λx x-k ),where{r n}is a sequence positive real number, λ∈(-1,1),k is a positive integer,this conclusion was drawn by a new method; some sufficient conditions that guarantee every positive solution to convergence to 1 as n→∞ were provided. Our results improved and generalized the known results.
出处
《佛山科学技术学院学报(自然科学版)》
CAS
2001年第2期1-4,共4页
Journal of Foshan University(Natural Science Edition)
基金
湖南省教委科研资助项目 (99C1 2 )
关键词
时滞差分方程
非线性
正解
全局吸引性
delay difference equation
nonlinear
positive solution
global attractivity