摘要
作为二阶微分方程f″-zf=0的解 ,Airy函数有可列个零点且均为负数。借助Macdonal函数 ,证明了这一重要结论 ,其证明过程不涉及整函数阶的问题 。
As a solution of defferential epuation f ″-zf=0 ,Airy function has a countable set of zeros.This important conclusion is proved by using Macdonal function in this article,and the process does not concern the order of integral function.It is a kind of more elementary method.