期刊文献+

障碍问题解的内正则性

Interior regularity for solutions to obstacle problems
下载PDF
导出
摘要 对非幂次增长的障碍问题 :∫Ωai(x,u,Du) φ xidx + ∫Ωb(x,u,Du)φ dx≥ 0  这里φ(x)≥ψ(x) - u(x) ,u(x)≥ψ(x) ,而φ∈ W1 0 LM(Ω ) ,ψ为局部 Holder连续的 ,我们得到其在 W1 LM(Ω)中弱解的 C0 ,αloc It is the purpose of this paper to obtain C 0,α loc  regularity for solutions in W 1 L M (Ω) to obstacle problems with nonpower growth of the following type: ∫ Ω a i (x,u,Du)  φ  x i +b(x,u,Du)φ dx≥ 0for φ∈W 1 L M (Ω) with φ(x)≥ ψ(x)-u(x) and u(x)≥ ψ(x), where ψ is locally Hlder continuous.
出处 《纯粹数学与应用数学》 CSCD 2001年第1期53-60,共8页 Pure and Applied Mathematics
关键词 正则性 障碍问题 弱解 下半连续 局部 HOELDER连续 John-Nirenberg引理 Regularity, obstacle problem, locally Hlder continuous
  • 相关文献

参考文献8

  • 1[1]Giaquinta M. Remarks on the regularity of weak solutions to some variational inequalities[J]. Math.Z., 1981, 177:15-31
  • 2[2]Gerhardt C. Global C1,1 -regularity for solutions of quasilinear variational inequalities[J]. Arch. Rational Mech. Anal. ,1985, 89:83-92
  • 3[3]Michael J, Ziemer W P. Interior regularity for solutions to obstacle problem[J]. Nonlinear Anal.TMA, 1986, 10:1427-1448
  • 4[4]Di Benedetto E, Trudinger N S. Harnack inequalities for quasi-minima of variational integrals[C]. Australian National University Research Report, 1984
  • 5[5]John F, Nirenberg L. On functions of bounded mean oscillation[J]. Commun. Pure Appl. Math. ,1961, 14:415-426
  • 6[6]Gilbarg D, Trudinger N S. Elliptic partial differential equations of second order[M]. New York:Springer-Verlag, 1983
  • 7[7]Krasnosel'skii M A, Rutickii Ya B. Convex functions and Orlicz spaces[M]. Groulngen: Noordhoff,1961
  • 8[8]Lieberman G. The natural generalization of the natural conditions of Ladyzhenskaya and Ural'tseva for elliptic equations[J]. Commun. in PDEs,1991, 16:311-361

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部