摘要
环R称为N-环,如果R的素根N(R)= 存在自然数n使rn=0}.本文不仅对N-环进行了刻划,而且还研究了 N-环的 Von Neumann正则性.特别证明了。对于 N-环 R,如下条件是等价的:(1)R是强正用环;(2)R是正则环;(3)R是左SF-环;(4)R是右SF-环;(5)R是MELT,左p-V-环;(6)R是MERT,右p-V-环.因此推广了文献[4]中几乎所有的重要结果,同时也改进或推广了其它某些有关正则环的有用结果.
A ring R is called a N-ring if N(R) ={r R | there is a natural number n such that rn = 0}. In this paper, some new characterization of N-rings are given. Furthermore, the Von Neumann regularity of N-rings is also considered. Particularly, we show the following result: for a N-ring R, the following conditions are equivalent: (1) R is a strongly regular ring; (2) R is a regular ring; (3) R is a left SF-ging; (4) R is right SF-ring; (5) R is a MELT, left p-V-ring; (6) R is a MERT, right p-V-ring.