摘要
本文首先构造了单纯形上积分型 Stancu算子 ,其次讨论了它对连续函数的逼近 .运用 Mamedov- Shisha和 Devore- Freud量化方法 ,得到了该算子对连续函数及连续可微函数的逼近度 ,并给出了它的 Vonorovskya型渐近公式 .
In this paper,Stancu-integral type operators are first constructed on simplexes,then discusseions on approximation to continuous functions are made.By Mamedov-Shishas and Devore-Freuds quantitizing method,the rates of approximation of the operators to continuous functions and continuous differentiable functions have been found,and more,the asymptotic expansion of Vonorovskyas type has been given for it.
出处
《数学杂志》
CSCD
北大核心
2001年第2期199-203,共5页
Journal of Mathematics