摘要
设C是射影平面H=PG(2,Fq)中的一条二次曲线.把H看作射影空间PG(3,Fq) 的无穷远超平面,那么H在PG(3,Fq)中的补空间是仿射空间X=AG(3,Fq).我们把 H上的点集划分为2个或3个子集的并.设a≠b∈X.若线ab与H的交点属于第i个 集合,定义a和b属于第i个结合类.我们证明上述构作是结合方案.最后,把H的某一 点集作为处理集,构作出结合方案.
Let C be a conic in a projective plane H = PG(2,Fq). Considering H as the hyperplane at infinity in a projective space PG(3, Fq), then the affine space complementary to H in PG(3, Fq) is X = AG(3, Fq). The points of H are then partitioned into 2 or 3 subset. Let a ≠ b ∈ X. Define a and b to belong to the i-th associates if the line ab intersects the subset i of H. We prove that the above constructions are association schemes. Finally, taking the set of some points on H as the set of treatment, some association schemes are constructed.
出处
《系统科学与数学》
CSCD
北大核心
2001年第3期283-286,共4页
Journal of Systems Science and Mathematical Sciences