摘要
该文对 Banach空间 LP(Ω)中二阶椭圆方程非齐次不适定 Neumann 问题,引入伪变分解的概念,应用Banach空间几何及[3]中关于Banach空间中线性算子的Moore-Penrose广义逆.证明了上述伪变分解为最小范数极值解,从而为适定的.
In this paper, the concept of preudo variational solution to the non-homogeneous ill-posed Neumann boundary value problem has been introduced in Banach space L^p(Ω) By means of mathod of Geometry of Banach space and Moore-Penrose metric generalized inverse of the linear operator in Banach space, we have proved that the preudo variational solution is well posed, and is equivvalent to the minimal norm extrimal solutionn to the boundary value problem in L^p(Ω).
出处
《数学物理学报(A辑)》
CSCD
北大核心
2001年第2期191-200,共10页
Acta Mathematica Scientia
基金
国家自然科学基金(19971023)
黑龙江省自然科学基金资助