摘要
设I是图G的一个含有k个点的独立集(简称k独立集).如果I不是G的其它任何独立集的真子集,则称I为G的一个极大独立集.G中所含的极大k独立集的个数记为m(gk,G).设gk是图G的任一个k独立集,如果存在(v1,v2…vi}V(G)-gk,i≥1,使得(1)对任意j∈{1,2,…,i},gk+{vi}的都是G的(k+1)-独立集;(2)对任意的都不是G的独立集,则称gk为G的一个i爪k独立集,G所含的i爪k独立集的个数记为mi(gk,G).该文证明了对简单图G,m1(gk,G)和m(gk,G)都是可重构的.另外,用同样的方法可以证明G中的极大k团的个数及i爪k团的个数也是可重构的.
Let I be a k-independent set of graph G (i. e, an independent set of G which contains k vertices) . If I is not a proper subset of any other independent set of G, then I is called a maximal k-independent set of G. The number of maximal h-independent sets of G is denoted by m(gk,G). Let gk be a k-independent set of G. If there exists (v1,v2, vi)V(G)-gk,I≥1,such that (1) For any j∈{1,2,…i},gk+{vj} is a (k+1)-independent set of G, (2) For any u∈V(G)-gk-{v1,v2,vi},gk+{u} is not an independent set of G, then gk is called an i-claw k-independent set of G. Let mi(gk,G) denotes the number of i-claw k-independent sets of G. In this paper, it is proved that both mi(gi,G) and m(gk, G) are reconstructible for simple graphs. Similarly, both the number of maximal k-cliques in G and the number of i-claw k-cliques in C are also reconstructible.
出处
《数学物理学报(A辑)》
CSCD
北大核心
2001年第2期284-288,共5页
Acta Mathematica Scientia
基金
国家教委博士点基金资助项目