摘要
设R是左、右凝聚环,R~ωR是一个忠实平衡自正交双模.对有限表现左R-模A和正整数n,本文研究了形如, 的同调方程.给出了模范畴为有限表现右R-模}是子模闭的充要条件,并举例说明了该模范畴并非总是子模闭的,
Let R be a left and right coherent ring and R~ωR a faithfully balanced selforthogonal bimodule. For any finitely presented left R-module A and a positive integer n, we study in this paper the homological equations such as A = EXt-R^n(X,ω). The necessary and sufficient conditions of the category of modules {EXt-R^n(B, R) | B is any finitely presented right R-module} being submodule closed are given, and some examples are given to explain that such a category of modules as above is not always submodule closed.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2001年第3期459-468,共10页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学青年基金资助项目(10001017)
国家教委留学回国人员科研启动基金资助项目