摘要
对固定的 1≤ k≤n-1,在对 f(t,y)更弱的条件下,本文重新建立了奇异边值问题正解的存在性.允许f(t,y)在y=0,t=0和t=1处具有奇性,本文只用到格林函数的正性和一个锥不动点定理,并且构造了格林函数的精确表达式.
For 1 ≤ k≤ n-1, the existence of solutions to the singular boundary value problem are reestablished under weaker and fewer restrictions on f(t, y), where f(t, y) may be singular at y = 0, t = 0 and t = 1. The arguments involve only positivity properties of the Green's function and a fixed point in cones. Moreover, the explicit formula of Green's function can be found in this paper.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2001年第3期541-548,共8页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金资助项目(19871012)