期刊文献+

基于极大似然估计的BP算法及其在深基坑开挖参数辨识中的应用 被引量:4

An improved BP algorithm and its application to parametric identification in deep foundation excavation
下载PDF
导出
摘要 本文采用人工神经网络 BP算法对深基坑开挖工程中的参数进行辨识。将某些现场实测值作为网络输入 ,土层物性参数作为网络的输出 ,通过有限元计算取得学习样本来训练网络 ,从而达到对深基坑开挖工程中的参数进行辨识的目的。同时 ,本文提出了将极大似然估计引入 BP学习算法中 ,可以考虑学习样本和网络输入 (现场实测值 )的误差 ,可以求得所辨识参数的可靠度。本文还对动态调整 BP学习算法的学习速率因子、冲量系数以加快网络学习速度的算法进行了研究 ,本文算例表明本文算法训练速率可比传统 BP算法快 10倍以上。 A novel method based on ANN BP algorithm to perform parametric identification in deep foundation excavation is proposed in the paper. Taking in situ measurements (displacements, pore pressures, stresses etc.) as network input and parameters to be identified as network output, the network is trained with the samples obtained from FEM computation. With the introduction of maximum likelihood approach, the errors of both the samples and the network input (in situ measurements) can be considered in the identification procedure, and the reliability of the identified parameters can also be obtained. To make the BP learning more efficient, a family of algorithms that optimize the learning rate factor and momentum factor dynamically are also studied in the paper. The numerical results provided in the paper illustrate that the computational effort for the learning process can usually be reduced by more than 10 times as compared with the conventinoal BP algorithm.
出处 《计算力学学报》 CAS CSCD 北大核心 2001年第2期138-145,共8页 Chinese Journal of Computational Mechanics
基金 国家基础性研究重大项目!(攀登 B计划 ) :"重大土木与水利工程安全性与耐久性的基础研究"资助
关键词 深基坑 开挖 参数辨识 极大似然估计 有限元 人工神经网络 BP算法 deep foundation excavation parametric identification maximum likelihood estimation finite element ANN BP algorithm.
  • 相关文献

参考文献2

二级参考文献3

共引文献60

同被引文献28

  • 1张旗,梁德群,樊鑫,李文举.基于小波域的图像噪声类型识别与估计[J].红外与毫米波学报,2004,23(4):281-285. 被引量:32
  • 2李银国,曹长修.神经元网络鲁棒能量函数的构造原理[J].模式识别与人工智能,1996,9(1):1-9. 被引量:7
  • 3颜七笙,王士同.基于soft形态学的椒盐噪声滤波器[J].微计算机信息,2005,21(11X):96-97. 被引量:6
  • 4焦李成.神经网络系统理论[M].西安:西安电子科技大学出版社,1996..
  • 5高大钊 孙钧 陈汉忠.深基坑工程(第二版)[M].北京:机械工业出版社,2002..
  • 6芏旭 王宏 王文辉.人工神经网络原理与应用[M].沈阳:东北大学出版社,2000..
  • 7Gob A.T.C.,Wong K、S.and Broms B.B.Estimation of lateral wall movement in braced excava~ons using neural networks.Can Geotech[J],1995,32:1059-1064.
  • 8Heehi·Nielsen R.Theory of the back propagation neural network.Proc.of IJCNN,1989,(1):593-603.
  • 9S.Hosseini and C.Jutten,Maximum likelihood neural approximation in presence of additive colored noise,accepted to IEEE Transactions on Neural Networks.2002.
  • 10Rumelhart D E,McClelland J L.The PDP research group:parallel distributed processing[M].Cambridge:MIT Press,1988.

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部