摘要
以Noether定理为基础,系统地研究热机电耦合的热释电体非保守动力学系统的守恒定律。引进熵流矢量和温度耗散函数描述热释电体系统的耗散现象,提出了热释电体非保守动力学系统的Lagrange函数以及广义Hamilton最小作用量原理,论证了不变性变换群的存在条件,提出并证明了广义Noether定理。由此得到了一组守恒定律及J、M积分。
The conservation laws of a thermo-piezoelectric dissipative dynamics were systematically studied on the basis of Neother's theorem. Entropy flux was introduced to describe dissipative phenomena. Generalized Hamilton's minimum energy principal and generalized Neother's theorems are presented and proved. A group of conservation laws and J,M integrals are obtained.
出处
《力学季刊》
CSCD
北大核心
2001年第2期154-161,共8页
Chinese Quarterly of Mechanics
基金
国家自然科学基金(10072033)
关键词
热释电体
非保守动力学系统
守恒定律
thermo-piezoelectricity
non-conservative dynamic system
conservation law