摘要
给出了在医药化学中应用的分段常变量中立型泛函微分方程 (y(t) -cy(t -τ) )′+a(t) y(t) +∑li=1bi(t) y([t -i]) =0和 (y(t) -cy(t - [t]) )′ =a(t)y(t) +b(t)y(t- [t]) +∑li=1bi(t)y([t-i])的解的振动性质 ,得到了方程有振动解的充分条件 .
The oscillatory properties of the solutions of the following neutral functional differential equations applied in chemomedical problems with piecewise constant arguments: (y(t)-cy(t-τ))′+a(t)y(t)+∑li=1b i(t)y()=0 and (y(t)-cy(t-))′=a(t)y(t)+b(t)y(t-)+∑li=1b i(t)y() are studied. Sufficient conditions for the oscillations of solutions of the above equations are obtained.
出处
《华南理工大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2001年第8期17-20,共4页
Journal of South China University of Technology(Natural Science Edition)
关键词
泛函微分方程
振动性
中立型
医药化学
functional differential equation
oscillation
neutral type