摘要
在管内非牛顿流体的流动中 ,依时性流动是较为复杂的一种流动随时间变化的流动 ,而非牛顿流体其本身的本构方程就较为复杂 ,这类问题归结为流动的运动方程与流体的本构方程以及连续性方程的联立求解 ,即归结为一个非线性微分方程的求解问题 .本文采用谱方法 ,在常压力梯度下 ,成功地将偏微分方程化为常微分方程组的初边值问题来处理 .得到速度随时间变化的关系曲线 .结果表明 。
The time dependent flow in tube is an important flow in industry. The flow varies with the time. This problem is complex because of the constitutive equation of the Non Newtonuan fluid.The time dependent problem is mathematically reduced to the inital and boundary value problem of a partial differential high order equation. The spectral method is chosen to deal with the nonlinear problem in this paper. The relation curves that velocity varies with time are obtained. The results show that the spectral method can be used to deal with the time dependent flow.
出处
《西南民族学院学报(自然科学版)》
2001年第2期180-185,共6页
Journal of Southwest Nationalities College(Natural Science Edition)
基金
国家自然科学基金!(1 9672 0 63)
国家民委重点项目 (990 6)
西南民族学院项目!(0 1 8)