摘要
在邻接矩阵的基础上 ,建立一种新的拓扑指数 mT :mT =Σ(δi·δj·δk… ) 0 .5,其中 :0 T =Σ(δi) 0 .5,1T =Σ(δi·δj) 0 .5,并计算了 61种化合物分子的0 T、1T值。发现 mT与这些化合物的气相色谱保留指数RI有很好的相关性。线性回归方程为 :RI =4 2 .7880 +1 3 8.1 681 0 T -4 8.64 2 81T ,相关系数R =0 9997,拓扑指数 (mT)
Based on the adjacent matrix, a new topological index mT was set up: mT =Σ( δ i·δ j·δ k …) 0.5 , 0 T and 1 T among mT is defined as: 0 T =Σ( δ i ) 0.5 , 1 T =Σ( δ i·δ j ) 0.5 . The 0 T ( 1 T ) values of the molecules of 61 compounds are calculated. It is found that mT is correlated well with the retention indices RI of gas chromatography for these compounds. The linear regression equation was set up: RI=42.7880+138.1681 0 T -48.6428 1 T R =0.9997 The results demonstrate that the structural character of compounds can be described by molecular topological indices ( mT ).
出处
《化学通报》
CAS
CSCD
北大核心
2001年第8期508-512,共5页
Chemistry
关键词
拓扑指数
有机物
气相色谱
保留指数
定量结构
性质
活性
相关性
醇
酸
Topological index, Gas chromatography, Retention index, Quantitative structure\|property/activity relationship