期刊文献+

噪声背景下基于多模板矢量量化的与文本无关的话者辩识 被引量:1

A Method Based On Multiple Vector Quantization For Robust Text-independent Speaker Identification
下载PDF
导出
摘要 在话者辨识系统的实际应用中,导致系统识别率下降的根本原因是噪声的影响,它使得测试与训练条件不一致。本文针对实际环境中常见的加性背景噪声,提出了利用加入不同类型、不同信噪比噪声的含噪语音进行训练说话人的模型,每个说话人具有多个模板。实验结果表明,这种方法能够有效的提高系统的鲁棒性。文中还讨论了距离加权方法在话者辨识中的应用。 The system performance will be degraded rapidly if the testing conditions do not accord with the training ones in speaker identification system. this paper introduces an approach for training speaker codebooks using multiple session training speech samples with every speaker having mutiple codebooks. These different session. training speech samples are obtained through adding several kinds of noise with different SNR to the original clear speech. Experiments show that this technique the robustness of system effectively
机构地区 南京大学声学所
出处 《信号处理》 CSCD 2001年第2期185-188,179,共5页 Journal of Signal Processing
基金 国家自然科学基金资助项目批准号69872014
关键词 话者辨识 多模板矢量量化 鲁棒性 文本 噪声 语音识别 Speaker identification Multiple template vector quantization Robustness
  • 相关文献

参考文献2

二级参考文献5

  • 1陈永彬,语言信号处理,1990年
  • 2李洪兴,工程模糊数学方法及应用,1993年
  • 3陈永彬,语音信号处理,1990年
  • 4袁中选,IEEE Proc of ICASSP’93
  • 5袁中选,IEEE Proc of ICASSP’96

共引文献17

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部