期刊文献+

关联规则挖掘中的关联推理 被引量:4

Association Inference in Association Rules Mining
下载PDF
导出
摘要 在大型数据库项目之间发现关联规则是一个重要的数据挖掘问题 ,而挖掘出的关联规则数常常是巨大的 .现基于覆盖运算 ,讨论已知关联规则可导出其它关联规则 。 Discovering?association?rules?between?items?in?a?larger?database?is?an?important?data?mining?problem.?Sometimes?The?number?of?association?rules?may?be?huge.?In?this?paper?,we?define?a?cover?operator?and?suggest?that?a?given?association?rule?can?be?used?to?derive?other?association?rules.?There?is?the?least?set?of?rules?that?covers?all?association?rules?which?are?shown?in?the?paper.
作者 王新 王湄生
出处 《云南民族学院学报(自然科学版)》 2001年第3期373-375,379,共4页 Journal of Yunnan University of The Nationalities(Natural Sciences Edition)
关键词 数据挖掘 关联规则 覆盖运算 关联推理 Data mining Association rules Cover operator Association inference
  • 相关文献

参考文献6

  • 1[1]Agrawal.R,Imielinski. T, Swami. A.Mining association rules between sets of items in large databases. In:Proceedinga of the ACM SIGMOD Conference on Management of Data[M]. Washington D. C,1993.207~216
  • 2[2]Agrawal. R, Srikant. R.Fast algorithm for mining association rules. In: Proceedings of the 20th International Conference on Very Large Databases[M]. Santiago, Chile,1994.478-499
  • 3[3]Pasquier. N,Bastide. Y,Taouil. R and Lakhal. L. Efficient mining of association rules using closed itemset lattices[J]. Information Systems 24(1): 1999,25- 46
  • 4[4]Srikant. R,Agrawal. R.Mining generalized association rules[J]. Future Generation Computer System ,1997,(13):161-180
  • 5[5]Yugami. N, Ohto. Y, Okamoto. S. Fast discovery of interesting rules.In:Proceeding of the 4th Pacific-Asia Conference[M].PAKDD2000, Japan,2000.17-27
  • 6[6]Chen. M.-S.,Han. J and Yu.P.S. Data mining:An overview from a datahase perspective[J].IEEE Transactions on Knowledge and Data Engineering, 1996,8(6):866-883

同被引文献27

  • 1马光志,崔荣晓.基于覆盖运算挖掘最小规则集[J].计算机工程与科学,2005,27(6):65-66. 被引量:1
  • 2谢翠华,沈洁,李云,程伟,林颖.一种基于FP-tree的最小预测集获取新算法[J].计算机工程,2006,32(6):82-85. 被引量:1
  • 3姜保庆,李建,徐扬.布尔关联规则集的结构[J].河南大学学报(自然科学版),2006,36(1):88-90. 被引量:2
  • 4Mohammed J Z. Generating non-redundant association rules[C]//Proc of the 6th ACM SIGKDD Int'l Conf on Knowledge Discovery and Data Mining. New York: ACM Press,2000:34-43.
  • 5范明,孟小峰.数据挖掘概念与技术[M].北京:人民邮电出版社,2007.
  • 6Li Jiuyong, Shen Hong, Topor R. Mining the smallest association rules set for predictions[C]//Proc of the 2001 IEEE Int'l Conf on Data Mining. California,USA,2001:361-368.
  • 7Pei J, Han J, Mao R. Closet: an efficient algorithm for mining frequent closed itemsets[C]//ACM SIGMOD'00. New York: ACM Press, 2000:11-20.
  • 8Jiuyong Li, Hong Shen, Rodney Topor. Mining the Smallest Association Rule Set for Predictions[A]. Proc of the 2001IEEE Int'1 Conf on Data Mining[C]. 2001. 361-368.
  • 9Doug Burdick, Manuel Calimlim, Johannes Gehrke. A Maximal Frequent Itemset Algorithm for Transactional Databases[A]. Proc of the 17th Int'l Conf on Data Engineering[C].443-452.
  • 10Mohammed J Zaki. Generating Non-Redundant Association Rules[A]. Proc of the 6th ACM SIGKDD Int' l Conf on Knowledge Discovery and Data Mining[C]. 2000. 34-43.

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部