期刊文献+

基于一种杂交学习算法的自适应复信道均衡技术 被引量:2

An adaptive complex communication channel equalization method based on a hybrid learning algorithm
下载PDF
导出
摘要 本文提出了一种基于多层前馈神经网络杂交学习算法的自适应复信道均衡的新方法。该学习算法用来训练一个输入、输出、权值和激活函数均为复数的神经网络。神经网络的训练利用了监督和非监督相结合的杂交技术 ,而权值的调整是基于TLS(totalleastsquare)准则进行的。计算机仿真结果表明 ,无论是在线性还是在非线性信道中 ,所提出的方法都表现出了很好的性能 ,这为自适应复信道均衡提供了一种新方法。 A novel method for adaptive communication channel equalization based on a multi layer feed forward neural network training algorithm was proposed in this paper.It trains a complex neural network whose inputs,outputs,weights and active functions are all complex valued.The training of the neural network is based on the combination of supervised and unsupervised learning process while the update of the weights based on the TLS (total least square)criterion.Computer simulation results demonstrate that the proposed equalizer has powerful properties both in linear and nonlinear channels.It proposed a novel method for adaptive complex channel equalization.
出处 《通信学报》 EI CSCD 北大核心 2001年第7期38-43,共6页 Journal on Communications
关键词 神经网络 数字通信系统 杂交学习算法 自适应复信道均衡 hybrid neural network adaptive equalization supervised unsupervised
  • 相关文献

参考文献5

二级参考文献4

  • 1Oja E,Neural Networks,1996年,9卷,435页
  • 2Chen L,IEEE Trans Neural Networks,1995年,6卷,1255页
  • 3Gao K,IEEE Trans Circuits Systems,1994年,41卷,718页
  • 4Xu L,Neural Networks,1992年,5卷,441页

共引文献2

同被引文献13

  • 1Mohamed Ibnkahla, Jacques Sombrin, Francis Castanie, et al. Neural networks for modeling nonlinear memoryless communication channels[J]. IEEE Transactions on Communications,1997, 45 (7): 768-771.
  • 2Young -Keun Park, Cyungho Lee. Applications of neural networks in high- speed communication networks [J] . IEEE Communications Magazine, 1995, 33 (10): 68-74.
  • 3Rong Chang P, Chin Wang B. Adaptive decision feedback equalization for digital satellite channels using multilayer neural networks[J]. IEEE Journal on Selected Areas in Communications, 1995, 13 (2): 316-324.
  • 4Yao- Ching Liu, Christos Douligeris. Rate regulation with feedback controller in ATM networks-- A neural network approach[J]. IEEE Journal on Selected Areas in Communications, 1997, 15 (2): 200-208.
  • 5Joaquim Neves E, Mário J.Leitá, Luis Almeida B. Neural networksin B -ISDN flow control: ATM Traffic prediction or network modeling [ J ] IEEE Communications Magazine, 1995, 33 (10): 50-56.
  • 6Proakis J G. Digital Communications[M]. McGraw-Hill, New York,3nd Ed., 1995.
  • 7Gibson G J, Siu S, Cowan C F N. The Application of Nonlinear Structures to the Reconstruction of Binary Signals[J]. IEEE Trans. on SP,1991,39(8) : 1877 - 1885.
  • 8Gibson G J, Siu S, Cowan C F N. Application of Multilayer Perceptrons as Adative Equalizer[C]. Proc. of IEEE Int Conf. on ASSP, 1989:1183.
  • 9Chen S, Gibson GJ, Cowan C F N, et al. Reconstruction of Binary Signals Using an Adaptive Radial-Basis-Function Equalizer[J]. Signal Processing, 1991,22(1):77-93.
  • 10Chen S, Mclaughlin S, Mulgrew B. Complex Valued Radial Basis Function Networks: Network Architecture and Learning Algorithm(Part I )[J]. Signal Processing, 1994,35(1):19-31.

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部