期刊文献+

恢复率正比于总人数的多传染阶段的艾滋病模型及其性态 被引量:1

Aids Model and its Property of Multi-Infection Phase with Recovery Ratio Which is in Direct Proportion to Total Number of People
原文传递
导出
摘要 文 [1 ]、[2 ]和 [3]主要是建立多传染阶段的艾滋病模型 ,并根据各自建立的模型 ,来讨论疾病传染的消除平衡态与流行平衡态以及它们的稳定性 .本文首先对文 [3]中的模型作适当的改进 ,再根据改进的数学模型来分析疾病传染的动态性质 ,着重讨论多传染阶段情况下艾滋病传染的持久性及其对总人数的影响 . Models of multi-infection phase are mainly constructed in theses \, \ and \. Balanced states of vanish and epidemic of disease infection and their stability are discussed according to the constructed model in each thesis. This paper takes appropriate improvement in the model in thesis \ at first, then analyses the dynamic property of disease infection according to inproved mathematical model, enphatically discusses the duration of AIDS infection in case of multi-infection phase and influence to total number of people.
作者 刘旭阳
出处 《数学的实践与认识》 CSCD 北大核心 2001年第3期257-263,共7页 Mathematics in Practice and Theory
关键词 艾滋病 数学模型 恢复率 一致持久性 多传统阶段 疾病传染 疾病生态学 AIDS Mathematical model recovery ratio uniformly duration
  • 相关文献

参考文献3

二级参考文献4

  • 1Michael J. Harrison. The cubic growth of AIDS cases: General dependence on early infection rates and distribution of times to appearance of clinical symptoms[J] 1989,Journal of Mathematical Biology(5):523~535
  • 2C. Castillo-Chavez,K. Cooke,W. Huang,S. A. Levin. On the role of long incubation periods in the dynamics of acquired immunodeficiency syndrome (AIDS)[J] 1989,Journal of Mathematical Biology(4):373~398
  • 3K. Dietz,K. P. Hadeler. Epidemiological models for sexually transmitted diseases[J] 1988,Journal of Mathematical Biology(1):1~25
  • 4Wei-min Liu,Herbert W. Hethcote,Simon A. Levin. Dynamical behavior of epidemiological models with nonlinear incidence rates[J] 1987,Journal of Mathematical Biology(4):359~380

共引文献5

同被引文献28

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部