摘要
设C是一致凸Banach空间E的非空闭凸子集,Г={Tt:t ∈ S}是C上渐进非扩张型的自映象族,使得对每个t∈S,Tt:C→C连续,其中,S是有单位元的交换的拓扑半群.又设{u(t):t∈S}是Г的几乎轨道.本文证明了,若Г在{u(t):t∈ S}关于C的渐近中心c∈C处渐近正则,则下列叙述等价:(i)Tt,t∈S的所有公共不动点之集F(Г)非空;(ii){u(t):t∈S}局部有界;(iii)limt||Ttc-c||=0;(iv) c∈ F(Г).进一步,运用该结果,本文建立了渐近非扩张族的几乎轨道的渐近行为方面的结果.
In this paper, let C be a nonempty closed covex subset of a uniformly convex Banach space E and r = {Tt: t∈ S} be a self-mapping family of asymptotically nonexpansive type on C such that for each t∈E S, Tt: C - C is continuous, where S is a commutative topological semigroup with identity. Let {u(t): t∈ S} be an almost- orbit ofГ . It is shown that if Г is asymptotically regular at the asymptotic center c∈ C of {u(t): t ∈ S} with respect to C, then the following statements are equivalent: (i) the set F(Г) of all common fixed points of Tt, t∈e S is nonempty; (ii) {u(t): t∈E S} is locally bounded; (iii) limt||Ttc-c|| = 0; (iv) c∈E F(Г). As an application we establish the result on the asymptotic behavior of almost-orbits of asymptotically nonexpansive families.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2001年第4期581-586,共6页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金资助项目(19801023)
高等学校优秀青年教师教学和科研奖励基金资助项目