摘要
本文证明了二阶拟线性偏微分方程很弱解的正则性.若u是(1)的一个很弱解并属于一个合适的包含W1,p loc( )的空间,则u属于 ( ),即u是(1)通常意义下的弱解.变分积分弱极值的同样结果被得到.
A regularity property for very weak solutions of quasilinear partial differential equations of second order is proved. If u is a very weak solution to (1) and belongs to a proper space, which contains W(), then u W( ), i.e., u is a weak solution to (1) in the usual sense. Similar result is given to weak minima of variational integrals.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2001年第4期605-610,共6页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金资助项目(19531060)
国家教育部博士点基金资助项目(97024811)