摘要
借助于改进了的Cauchy-Schwarz不等式 ,得到了序列不等式 ∑∞n =1an≤ 23∑∞k =1(rkk)12 (其中rk =∑∞n =ka2 n)的一个很强的结果 ,并把它推广到了连续的情形 .
In this paper it is shown that a quite result of the sequence inequality ∑∞n=1a n≤23∑∞k=1 (r kk) 12 (r k=∑∞n=ka 2 n) can be attained by aid of the refined Cauchy-Schwarz Inequality,and this sequence inequality is extended.