期刊文献+

耦合Lorenz振子的同步混沌分岔

Hopf Bifurcation from Synchronous Chaos of Coupled Lorenz Oscillators
下载PDF
导出
摘要 研究了时空混沌系统--耦合Lorenz振子同步混沌的分岔行为.当非对称耦合参数达到临界值,耦合系统的同步混沌态发生Hopf分岔,在同步混沌态上迭加一个周期行波.分岔点的参数可由计算Lyapunov指数得到,分岔产生的行波频率等于分岔前临界横模的广义旋转数.继续增加非对称耦合参数,系统经历准周期、混沌到周期运动的变化.在这个过程中同步混沌发生Hopf分岔时产生的周期行波始终存在. A new kind of Hopf bifurcation from synchronous chaos of a spatiotemperal system was present composed of coupled Lorenz oscillators. When the asymmetric coupling parameter reached a critical value, a Hopf bifurcation from the synchronous chaos takes place. As a result, a periodic traveling wave is superposed on the synchronous chaotic state. The bifurcation threshold of the parameter can be obtained from the Lyapunov exponent spectrum. The frequency of the traveling wave is equal to the generalized winding number of the critical transverse modes. As the asymmetry of coupling is enhanced, the system undergoes quasiperiodic, chaotic and periodic motions. All the time the traveling wave in the process produced from Hopf bifurcation is maintained.
作者 马文麒
出处 《北华大学学报(自然科学版)》 CAS 2001年第4期289-293,共5页 Journal of Beihua University(Natural Science)
关键词 时空混沌系统 同步混沌 HOPF分岔 临界横模 耦合Lorenz振子 Lyopunov指数 Spatiotemperal chaotic system Synchronous chaos Hopf bifurcation Critical transverse mode
  • 相关文献

参考文献9

  • 1[1]M. G. Rosenblum, A. S. Pikovsky, J. Kurths. Phase Synchronization of Chaotic Oscillators [J]. Phys. Rev. Lett. ,1996,76:1804~ 1807.
  • 2[2]M. G. Rosenblum, A. S. Pikovsky, J. Kurths. From Phase to Lag Synchronization in Coupled Chaotic Oscillators [J].Phys. Rev. Lett. , 1997,78:4193~4196.
  • 3[3]A. S. Pikovsky, M.G. Rosenblum, G. Osipov J. Kurths. Phase Synchronization of Chaotic Oscillators by External Driving[J]. Physica D, 1997,104:219~238.
  • 4[4]A. S. Pikovsky, G. Osipov, M. G. Rosenblum M. Zarks, et al. Attractor-Repeller Collision and Eyelet Intermittency at the Transition to Phase Synchronization [ J]. Phys. Rev. Lett. , 1997,79: 47 ~ 50 .
  • 5[5]T. Yalcmkaya, Y. C. Lai. Phase Synchronization of Chaos [J]. Phys. Rev. Lett. , 1997,79:3885.
  • 6[6]E. Rosa, E. Ott, M. Hess. Transition to Phase Synchronization of Chaos [J]. Phys. Rev. Lett. , 1998,80:1642~1645.
  • 7[8]J. Z. Yang, G. Hu, J. H. Xiao. Chaos Synchronization in Coupled Chaotic Oscillators with Multiple Positive Lyapunov Exponents[J]. Phys. Rev. Lett. , 1998, 80:496~499.
  • 8[9]M. A. Matias, V. P. Munuzuri, M. N. Lorenzo, et al. Observation of a Fast Rotating Wave in Rings of Coupled Chaotic Oscillators[J]. Phys. Rev. Lett., 1997,78:219~222.
  • 9[10]J. F. Heagy, L. M. Pecora, T. L. Carroll. Short Wavelength Bifurcations and Size Instabilities in Coupled Oscillator Systems[J]. Phys. Rev. Lett., 1995,74:4185~4188.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部