期刊文献+

与键角有关的叠氮化银的位能面和无辐射跃迁 被引量:1

Angular dependence of potential and non-radiatin transition of AgN_3
下载PDF
导出
摘要 用考虑到电子相关能的量子化学从头算方法 (MC CEPA ,ACPF和CEPA)计算了键叠氮化银Ag N与N N间面内与面外不同键角和面外一定的键角沿着AgNNN间的距离R2 几个最低的激发态和基态单态的势能曲线。两个最低的三重态的势能曲线在R2 =3.392 (a .u)附近与基态单态的相交提供了标准的光化学反应学家所谓的无辐射跃迁势能面形式。而这交点的位置恰与光解反应的1.4~ 1.8eV高的反应势垒的位置 R2 =3.192 (a.u)相近 ,且势垒仅略有增高。故而B .P .Aduev在热解的同时观察到了化学发光现象。并发现叠氮基的面外弯曲的垂直跃迁矩要比面内弯曲和键长变化方式的跃迁矩大得多 ; Using the coupled electron potential algorithms in quantum chemistry, MC CEPA(many configuration coupled electron pair),ACPF(Average coupled electron pair function), and CEPA(coupled electron pair), we have calculated the lowest electronic states of AgN 3 as functions of the in and out plane bond angles (AgNN N) By and Bx and of bond length R 2(bond (AgNN N) at out plane bond angle  B x=5°.  The potential curve intersections at R 2=3.392a.u.between those of single state (ground state) and two triplet states make non radiation transition of AgN 3 possible, and the points of intersection are close to the points (R 2=3.192a.u.) at which there are potential barriers (1.4~1.8?eV high) of the photo dissociation. That is the reason why the thermo decomposition and photo dissociation of AgN 3 are observed at the same time in reference [7]. The barrier of non radiation transition is higher than that of photo dissociation. The perpendicular transition moments along the potential curve dependent on out plane bond angle is larger than that dependent on other bond angles and bond lengths. The stable cis and anti structure of excited states are discussed.
出处 《大连轻工业学院学报》 2001年第2期94-98,共5页 Journal of Dalian Institute of Light Industry
关键词 叠氮化银 无辐射跃迁 从头计算法 量子化学 光解机理 silver azide non radiationtransition Ab initio calculation
  • 相关文献

参考文献11

  • 1SHI Shou-heng, SHI Chuan, Zhang Shao-yin and Dai Hong-yi (Dalian College of Light Industry, Dalian 116034, P. R. China).A Theoretical Study of the Mechanism forthe Photodecomposition of AgN_3[J].Chemical Research in Chinese Universities,2001,17(2):202-206. 被引量:1
  • 2[2]COTTON R J.Electonic structure of some inorganic azides from X-ray electron spectronscopy [J].J Chem Phys,1976,64(8) :3 481-3 485.
  • 3[3]NICHOLLS R W.On the nature of Ultraviolet light which accormpanies the decomposition of some azides[J].J Chem Phys,1960,64:1 760.
  • 4[4]EVANS B L.Structure and stability of inorganic azides[J].Proc Roy Soc A,1957,240:484.
  • 5[5]EGGERT J.The initiation of explosion by light[J].Proc Roy Soc A,1957,246:240- 247.
  • 6[6]L′VOV Boris V.Mechanism of thermal decomposition of metal azides[J].Thermochimixa Acta,1997,291:179- 185.
  • 7[7]ADUEV B P,ALVKER E D,KRIGER V G.Study of silver azide explosive decomposition by spectroscopic methods with high temporal resolution[J ].Solid Ionics,1997,101-103:33-36.
  • 8[8]MEIER U,STAEMMLER V.CASSCF and CEPA Calculations for the photodissociation of HN3.2.Photodissociation into N2 and HN on the lowest 1A surface of HN3[J].J Phys Chem,1991,95 :6 111-6 117.
  • 9[9]SCHOENNENBECK G,BIEHL H,STUHI F,et al.Vuv photolysis of hydrszoic acid:absorption and fluorescence excitation spectra [ J ].Chem Phys,1998,1 09 (6):2210-2219.
  • 10[10]CHOI C S,Boutin H P.Acta Crystallogr[M].New York: Plenum Press,1969.

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部