期刊文献+

使用修改的豪氏道夫距离自动提取运动对象 被引量:4

Extraction of Video Object Plane Using Modified Hausdorff Object Tracker
下载PDF
导出
摘要 新的视音频编码标准 MPEG- 4增加了支持基于内容的功能 ,它把视频序列分割成语义意义上的视频对象(VO)视频对象在某一瞬时的“快照”称为视频对象平面 (VOP) ,且一系列 VOP表示一个运动对象 .VOP分割相当困难 ,这主要是因为物理对象通常不以亮度、彩色或光流等低级特征来表达 ,所以经典的分割方法无法获得有意义的分割结果 .为了对这种视频运动图象进行有效的提取 ,提出了一种基于修改的豪氏道夫对象跟踪器的自动 VOP分割方法 .首先提取出初始模型 ,然后用跟踪器在序列后继帧中跟踪此对象 ,再对模型逐帧修改 ,以适应对象在后继帧中形状的旋转和变化 ,最后根据一系列二值模型来提取出视频对象 .此外 ,为了提高分割效果和减少复杂性 ,还使用了静态背景滤除技术来滤除静态背景 .实验结果表明 。 The new video&audio coding standard MPEG 4 is enabling content based functionalities. It takes advantage of a decomposition of sequences into semantically meaningful video object (VO). A snapshot of a VO is named video object plane(VOP) at a given time and a series of VOPs represent one moving object. This is a very challenging task, because physical objects are normally not homogeneous with respect to low level features such as color, luminance, or optical flow. Hence, conventional segmentation algorithms will fail to obtain meaningful partitions. In this paper, a new automatic VO segmentation algorithm based on modified Hausdorff object tracker is presented. A binary model for moving object is automatically derived and tracked in subsequent frames using the modified Hausdorff distance. First initial model is extracted and tracked based on the proposed object tracker against subsequent frames in the sequence. Then the model is updated every frame to accommodate for rotation and changes in shape. The video object is extracted by a series of binary models in the end. Furthermore, to improve the quality of segmentation and to reduce the computational complexity , stationary background is filtered by a novel technique. Experimental results demonstrate the performance of our proposed algorithm.
作者 史立 张兆扬
出处 《中国图象图形学报(A辑)》 CSCD 北大核心 2001年第7期689-693,共5页 Journal of Image and Graphics
基金 上海市自然科学基金 ( 992 D14 0 35 ) 上海市教委重点项目 ( s990 12 3)
关键词 MPEG-4 对象跟踪 视频对象平面 豪氏道夫距离 视频编码标准 运动图象 自动提取 MPEG 4, Object tracking, Video object planes, Hausdorff distance
  • 相关文献

参考文献10

  • 1MeierT,NganK N.Automatic segmentation of moving objectsfor video object plane generation[].IEEE TransonCircuits andSystems forVideoTechnology.1998
  • 2Ebrahimi T,Home C.MPEG-4 natural coding—an overview[].Signal Processing.2000
  • 3R, Mech,M, Wollborn.A noise robust method for segmentation of moving objects in video sequences[].Proc International Conference on Acoustics Speech and Signal Processing.1997
  • 4Neir A,Colonnese S,Russo G et al.Automatic moving object and background seperation[].Signal Processing.1998
  • 5HuttenlocherDP,etal.ComparingimagesusingtheHausdorffdistance[].IEEETransationsonPatternAnalMachineIntell.1993
  • 6Huttenlocher D P,Noh J J,Rucklidge W J.Tracking nonrigid objects in complex scenes[].Proceedings of the Fourth International Conference on Computer Vision.1993
  • 7Azencott R,Durbin F,Paumard J.Multiscale identification of building in compressed large aerial scenes.In: Proc. 13th Int .Conf[].Augustinianum.1996
  • 8Dubuisson MP,,Jain AK.Amodified Hausdorff distance for ob-ject matching[].Proceedings ofthIAPR Internation-al Conference on Pattern Recognition.1994
  • 9CANNYJ.AComputationalApproachtoEdgeDetection[].IEEETransactionsonPatternAnalysisandMachineIntelligence.1986
  • 10Rosenfeld A,Pfaltz J L.Sequential operations in digital picture processing, J.ACM[].October.1966

同被引文献179

  • 1田光见,赵荣椿.步态识别综述[J].计算机应用研究,2005,22(5):20-22. 被引量:16
  • 2黄士科,陶琳,张天序.一种改进的基于光流的运动目标检测方法[J].华中科技大学学报(自然科学版),2005,33(5):39-41. 被引量:17
  • 3叶波,文玉梅.基于步态的人身份识别技术综述[J].计算机应用,2005,25(11):2577-2580. 被引量:8
  • 4杜友田,陈峰,徐文立,李永彬.基于视觉的人的运动识别综述[J].电子学报,2007,35(1):84-90. 被引量:79
  • 5卢官明,毕厚杰.基于数学形态学的图像序列分割[J].南京邮电学院学报,1997,17(2):54-57. 被引量:2
  • 6Appleton B, Talbot H. Globally Minimal Surfaces by Continuous Maximal Flows. IEEE Trans on Pattern Analysis and Machine Intelligence, 2006, 28(1) : 106 -118
  • 7Boykov Y, Jolly M P. Interactive Graph Cuts for Optimal Boundary & Region Segmentation of Objects in n-d Images//Proc of the 8th International Conference on Computer Vision. Vancouver, Canada, 2001, I : 105-112
  • 8Criminisi A, Cross G, Blake A, et al. Bilayer Segmentation of Live Video // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York, USA, 2006: 53 -60
  • 9Kim M, Choi J G, Kim D. A VOP Generation Tool: Automatic Segmentation of Moving Objects in Image Sequences Based on Spario-Temporal Information. IEEE Trans on Circuits and Systems for Video Technology, 1998, 9(8): 1216-1226
  • 10Collins R T, Lipton A J, Kanade T, et al. A System for Video Surveillance and Monitoring: VSAM Report. Technical Report, CMURI-TR-00-12, Pittsburg, USA: Carnegie Mellon University. Robotics Institute, 2000

引证文献4

二级引证文献98

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部