期刊文献+

菲波纳奇数列在常微分方程外推方法中的应用 被引量:1

Fibonacci Sequence fOR Ordinary Differential Equation Extrapolation Methods
原文传递
导出
摘要 §1.引言 Deuflhard在关于常微分方程外推方法的综合报告[1]中认为“在早期的论文中,外推表依可用于无限排列(按两个下标)的想法加以分析:在数列? In a survey on ordinary differential equation extrapolation methods, Deuflhard indicatedthat 'the Toeplitz condition is no longer needed'. Numerical stability is however an inevitableproblem, so long as the extrapolation is performed on a computer with finite digits. To ensure thenumerical stability, the Toeplitz condition should not be neglected. Especially, the harmonicsequence used by Deuflhard in the extrapolation procedure does not hold the Toeplitz condi-tion. From the point of view of numerical stability, it is not desirable. Use of Fibonacci se-quence in the ordinary differential equation extrapolation methods is suggested. The sequencehas an outstanding advantage in numerical stability as compared with other sequences.
作者 秦曾复
机构地区 复旦大学数学系
出处 《计算数学》 CSCD 北大核心 1991年第4期425-432,共8页 Mathematica Numerica Sinica
  • 相关文献

参考文献1

  • 1秦曾复,高等学校计算数学学报,1982年,4期,60页

同被引文献1

  • 1秦曾复.由中点规则及菲波纳奇数列形成的龙贝格求积[J]复旦学报(自然科学版),1981(01).

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部