摘要
本文在正规三角形网格上对二维非线性守恒双曲方程组的初值问题构造一类二阶精度MmB(locally Maximum-minimum Bounds preserving)差分格式,并用此格式对二维无粘Bergers方程的Riemann初值问题进行了计算,结果表明此格式具有高分辨率和非振荡等性质。
In this paper, a class of second order accurate MmB (locally Maximum--minimumBounds preserving) schemes is constructed for initial value problems of 2--D nonlinearconservation laws on regular triangular meshes, an'd the numerical solutions for Riemann problems of 2__D inviscid Bergers eqution are given by using these schemes. The numerical results showthat the schemes have high resolution and nonoscillatory properties.
出处
《计算物理》
CSCD
北大核心
1991年第3期257-263,共7页
Chinese Journal of Computational Physics
关键词
MMB差分格式
非线性守恒律
流场
regula triangular meshes, 2--D nonlinear hyperbolic eguation, MmB differenceschemes