期刊文献+

遗传算法在前向神经网络参数估计中的应用 被引量:2

An Application of Genetic Algorithms to Parameter Estimation for Feed-forward Neural Networks
下载PDF
导出
摘要 人工神经网络在很多领域有着成功的应用。神经网络参数估计有许多训练算法 ,BP算法是前向多层神经网络的典型算法 ,但BP算法有时会陷入局部最小解。遗传算法是一种随机优化技术 ,它可以发现全局最优解。本文介绍了遗传算法在前向多层神经网络参数估计中的应用 ,并对标准遗传算法进行了适当的改进。结合具体例子给出了算法实现的操作步骤和实验结果。实验数据表明采用遗传算法得到的神经网络参数是最优的 ,神经网络的性能优于基于BP算法的神经网络性能。 Artificial neural networks were successfully applied to solve actual problems in many areas. There are a few training algorithms for parameter estimation of neural networks, in which back propagation (BP) algorithm is the typical algorithm for feed-forward multi-layer neural networks. However, BP algorithm sometimes traps into the local minimum. Genetic algorithm (GA) is a stochastic optimization technique.It can lead to global optimal solutions for complex problems. In this paper an application of GA to parameter estimation for feed-forward multi-layer neural networks is introduced. Suitable improvements are made for the standard genetic algorithms. An example of curve fitting is presented, and the steps of GA realization and experimental results are given. Experimental results have shown that parameters of the network obtained by GA can be ensured to be optimal and the performance of the network is better than that of the network based on BP algorithm.
出处 《电子测量与仪器学报》 CSCD 2001年第2期1-5,共5页 Journal of Electronic Measurement and Instrumentation
关键词 遗传算法 神经网络 参数估计 Genetic algorithm,neural network,parameter estimation.
  • 相关文献

参考文献1

  • 1周继成,人工神经网络,1993年,47页

同被引文献30

  • 1李洪兴.因素空间理论与知识表示的数学框架(Ⅰ)──因素空间的公理化定义与描述架[J].北京师范大学学报(自然科学版),1996,32(4):470-475. 被引量:67
  • 2鲁昌华,苌凝凝,李艳红.BP神经网络对驻极体麦克图像特征识别的研究[J].电子测量与仪器学报,2007,21(2):26-30. 被引量:2
  • 3CASTILLO E. Functional networks[J].Neural Processing Letters, 1998, 7: 151-159
  • 4CASTIL E, COBO A, GUTIERREZ J M. Functional networks with applications [J]. Kluwer Academic Publishers, 1999.
  • 5CASTILLO E, GUTIERREZ J M, COBO A, et al.A minimax method for learning functional networks[J]. Neural Processing Letters, 2000, 11(1): 39-49.
  • 6ALFONSO I, ARCAY B, COTOS J, et al. A comparison between functional networks and artificial neural net-works for the prediction of fishing catehes[J]. Neural Comp. & Appl., 2004, 13(1): 24-31
  • 7ZHOU Y Q, CAO D Q, JIAO L H. Multi-dimensional functions approximation of polynomial functional net- works [J]. GESTS international Transactions on Computer Science and Engineering, 2005, 21(1): 161-169.
  • 8CASTILLO E, COBO A, GUTIERREZ J M. Working with differential functional and difference equations using functional networks[J]. Appl. Math. Model, 1999, 23: 89-107.
  • 9ZHANG Q J,GUPTA K C.Neural Networks for RF and Microwave Design[M].Boston:Artech House,2000.
  • 10PAULO H,SILVA D F,ELDER E C,et al.Using a multilayer perceptions for accurate modeling of Quasi-Fractal patch antennas[C].Lisbon:Proceedings of International Workshop on Antenna Technology,2010:1-4.

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部