摘要
设f(x),g(x)分别为复数域上的 m和 n次多项式 利用直接展开法分 m≥n和 m<n两类情况讨论 了形如 f(x)+ ε g(x)=0的摄动代数方程[1]的近似解, 得到了其根的两项展开式的3个公式由前2个公式根据退化方程[2]的单根或重根可给出该方程的m个根由第3个公式可给出关于m<n情形其余n- m个根, 并推广了文[1]相应的结果
Let f(x) and g(x) be two polynomials in complex number field with their orders being m and n respectively. By using direct expanding method, the approximate solutions of the perturbed algebraic equation such as f(x)+ ε g(x)=0 for m≥ n and m<n, and three formulas about two terms expansion of its roots are obtained. The m roots can be given according to the single root or pluri- root of its degenerate equation from the first two. The rest n- m roots for m<n can be given according to the third, and the relative result of [1] is generalized.
出处
《安徽机电学院学报》
CAS
2001年第2期76-78,共3页
Journal of Anhui Institute of Mechanical and Electrical Engineering
关键词
摄动解
渐近展开式
近似解
代数方程
perturbation
asymptotic expansion
approximate solution