摘要
证明了下列定理:设A、B分别为困G1=(V1,E1)与G2=(V2,E2)的邻各矩阵,且V1=V2=n,则留G1和G2同语的充分必要条件是tr(Ak)=tr(Bk),k=l,2,…,n。
In this paper, We prove the fallowing theorem..Suppose A、B are adjacency matrices ofgraphs G1 = (V1, E1) and G2 = (V2,E2), and V1 = V2 =n, Then the necessary and sufi-cient of graphs G1、G2, cosfectrum is tr (Ak ) =tr(Bk ),k = 1, 2, ..,n 。
关键词
同谱图
邻接矩
迹
判别法
图论
特征多项式
特征值
cospectral graphs, adjacency matrix, trace, necessary and sufficient condition