摘要
将神经网络引入逆控制,提出了一种基于神经网络的自适应逆控制。该控制结构主要有两个子神经网络组成,其中一个用于对系统进行辨识,另一个子网络实现对模型的逆作为控制器,从而构成自适应的逆控制。将其应用于热工系统中并进行大量仿真研究,结果表明针对不同的热工对象,该控制系统都能有效的克服扰动,适应环境及参数的变化,表现出良好的鲁棒性和控制精度。
This paper introduces an adaptive inverse neural network-based control architecture. There are two three-layer back-propagation neural networks in it, one is applied to identify the controlled object, other one approximates the plant inverse transfer function. The on-line training method using inverse control network is described in detail. Extensive simulation studies on large inertia objects with long time-delay in the power plants have shown that the controller performs very well and can easily be accomplished on-line.
出处
《华北电力大学学报(自然科学版)》
CAS
北大核心
2001年第3期26-30,共5页
Journal of North China Electric Power University:Natural Science Edition
关键词
自适应逆控制
仿真
神经网络
PID控制器
火电厂
neural network
adaptive control
inverse dynamic model
Bp algorithm
reference model
thermotechnical automatic control system