摘要
本文采用考虑了Pierson-Moskowitz谱的归一化带限Weierstrass分形函数来模拟动态分形海面.利用基尔霍夫近似研究了该粗糙面的电磁散射,讨论了后向散射截面随入射角的变化,给出了后向散射截面时间序列的分维与分形海面分维间的关系.计算了散射场幅值,结果表明该分形海面散射场幅值分布服从K-分布.
In this paper,a normalized band-limited Weierstrass fractal model is presented for modeling the time-varying rough sea surface. In particular, the Pierson-Moskowitz spectrum is incorporated into this model to represent a fully developed sea surface. The solution of the scattering field from this fractal surface is studied based on Kirchhoff theory, and the effect of the incident angle on the backscattering cress section is discussed. The relationship between the fractal dimension of the time series of the the backscattering cress section and the fractal dimension of the sea surface is given. The numerical results of the scattering fields show that the distribution of the scattering amplitude satisfies the K-distribution.
出处
《电子学报》
EI
CAS
CSCD
北大核心
2001年第9期1287-1289,共3页
Acta Electronica Sinica
基金
高等学校优秀青年教师教学
科研奖励基金资助项目
关键词
分形海面
电磁散射
海谱分布
fractal sea surface
Kirchhoff approximation
electromagnetic scattering