期刊文献+

P_0函数非线性互补问题的非内部连续化算法 被引量:2

原文传递
导出
摘要 提出了一种新的光滑函数 ,它具有现存的一些光滑函数不具备的性质 .基于此光滑函数 ,讨论了求解P0 函数非线性互补问题的光滑路径的存在性和连续性 .在非线性互补问题的解集非空有界的假设下 ,利用新光滑函数的特性 ,研究了求解P0 函数非线性互补问题的非内部连续化算法得到的迭代序列的有界性 .解集非空有界的条件弱于一些现存的求解非线性互补问题的连续化算法所要求的假设条件 .
出处 《中国科学(A辑)》 CSCD 北大核心 2001年第6期488-494,共7页 Science in China(Series A)
基金 国家自然科学基金资助项目 (批准号 :198710 16 197310 0 1)
  • 相关文献

参考文献24

  • 1[1]Burke J, Xu S. The global linear convergence of a non-interior path-following algorithm for linear complementarity problems. Math Oper Res, 1998, 23(3): 719~734
  • 2[2]Chen B, Chen X. A global and local superlinear continuation-smoothing method for P0+R0 and monotone NCP. SIAM J Optim, 1999, 9(3): 624~645
  • 3[3]Chen B, Xiu N. A global linear and local quadratic non-interior continuation method for nonlinear complementarity problems based on Chen-Mangasarian smoothing functions. SIAM J Optim, 1999, 9(3): 605~623
  • 4[4]Facchinei F, Kanzow C. Beyond monotonicity in regularization methods for nonlinear complementarity problems. SIAM J Control Optim, 1999, 37(4): 1150~1161
  • 5[5]Gowda M S, Tawhid M A. Existence and limiting behavior of trajectories associated with P0-equations. Comput Optim Appl, 1999, 12(1-3): 229~251
  • 6[6]Sun D. A regularization Newton method for solving nonlinear complementarity problems. Appl Math Optim, 1999, 40(3): 315~339
  • 7[7]Ravindran G, Gowda M S. Regularization of P0-functions in box variational inequality problems. SIAM J Optim, 2000, 11(3): 748~760
  • 8[8]Chen B, Harker P T. A non-interior-point continuation method for linear complementarity problem. SIAM J Matrix Anal Appl, 1993, 14(4): 1168~1190
  • 9[9]Billus S C, Dirkse S P, Ferris M C. A comparison of algorithms for large-scale mixed complementarity problems. Comput Optim Appl, 1997, 7(1): 3~25
  • 10[10]Kanzow C. Some noninterior continuation methods for linear complementarity problems. SIAM J Matrix Anal Appl, 1996, 17(4): 851~868

同被引文献14

  • 1Ferris M C,Pang J S.Engineering and economic applications of complementarity problem[J].SIAM Review,1997,39(4):669-713
  • 2Isac G.Complementarity Problems[M].Berlin:Springer-Verlag,Lecture Notes in Math,1528,1990:16-138
  • 3Todd M J.The Computation of Fixed Points and Applications[M].New York:Springer-Verlag,1976:64-100
  • 4Kojima M,Yamamoto Y.Variable dimension algorithms,basic theory,interpretations and extensions of some methods[J].Math Prog,1982,24:177-215
  • 5Laan G van der,Talman A J J.Simplicial approximation of solutions to the nonlinear complementatity problem with lower and upper bounds[J].Math Prog,1987,38:1-15
  • 6陈开周,党创寅,杨再福.不动点理论和算法[M].西安:西安电子科技大学出版社,1990:136-284
  • 7Tang Jia, Liu Sanyang. A smoothing broyden-like method for solving the mixed complementarity problem with aFo-function [J]. Nonlinear Analysis: Real World Applications,2010 (11) : 2770 - 2786.
  • 8Tang Jia,Liu Sanyang? Ma Changfeng. One-step smoothing Newton method for solving the mixed complementarityproblem with a Po -function [J]. Applied Mathematics and Computation? 2009,215 (6) : 2326 - 2336.
  • 9Chen B, Chen X,Kanzow C. A penalized fischer-burmeister NCP-function : theoretical investigate and numericalresults [J]. Mathematical Programming, 2000,88: 211 - 216.
  • 10Sun D,Womersley R S. A new unconstrained differentiable merit function for box constrained variational inequa-lity problems and a damped Gauss-Newton method [J]. SIAM Journal on Optimization? 1999,9: 388 - 413.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部