期刊文献+

图是超级限制性边连通的一个Ore型充分条件 被引量:5

An Ore Type Sufficient Condition for a Graph to Be Super Restricted Edge-Connected
下载PDF
导出
摘要 设 G是 n阶简单无向图 ,G的顶点 x的度记为 d(x) .证明了如果对 G中每一对不相邻的顶点 x和 y都有 d(x) +d(y)≥ n+2 ,那么 ,G是超级限制性边连通的 ,除非 n≥ 6是偶数且 G=2 Kn/2 ∪ F2 ,这里 F2 是 G的一个 2因子 .这一结果是对图的极大限制性边连通性的 Ore型充分条件的进一步扩展 . Let G be a simple undirected graph of order n and d(x) denotes the degree of vertex x in G . The paper proved that if d(x)+d(y)≥n+2 for any pair of nonadjacent vertices x and y in G , then G is super restricted edge connected, unless n ≥6 is even and G =2 K n/2 ∪ F 2, where F 2 is a 2 factor of G . This result extends an Ore type sufficient condition for a graph to be maximally restricted edge connected.
作者 王应前 李乔
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2001年第8期1253-1255,共3页 Journal of Shanghai Jiaotong University
基金 国家自然科学基金项目 (199710 5 6 )
关键词 限制性边连通度 极大限制性边连通 超级限制性边连通 简单无向图 Ore型充分条件 restricted edge connectivity maximally restricted edge connected super restricted edge connected (super λ′)
  • 相关文献

参考文献2

二级参考文献1

  • 1Li Q L,Networks,1998年,31卷,61页

共引文献9

同被引文献20

  • 1WANG Yingqian LI Qiao.Upper bound of the third edge-connectivity of graphs[J].Science China Mathematics,2005,48(3):360-371. 被引量:12
  • 2王应前.图的三阶边连通度的优化问题[J].中国科学(A辑),2006,36(4):369-377. 被引量:5
  • 3Provan J S, Ball M O. The complexity of counting cuts and of computing the probability that a graph is connected[ J] .SIAM J Comput, 1983,12:777 - 788
  • 4Bauer D, Boesch F,Suffel C,et al. On the validity of a reduction of reliable network design to a graph extremal problem[ J]. IEEE Tram Circuits System, 1989,34:1 579 - 1 581
  • 5Esfahanian A, Hakimi S.On computing a conditional edge connectivity of a graph[J] .Info Process Lett, 1988,27:195 - 199
  • 6Zhang Z, Yuan J J.A proof of an inequality concerning k- restricted edge connectivity[J] .Discrete Math,2005,304:128- 134
  • 7Zhang Z, Yuan J J.A proof of an inequality concerning k-restricted edge connectivity[J] .Discrete Math,2005,304:128- 134
  • 8Fiol M A. On super - edge - connected digraphs and bipartite digraphs[J].J Graph Theory, 1992,16(6) :545 -555
  • 9徐俊明.组合网络理论[M].北京:科学出版社,2006.
  • 10邦迪.TA.默蒂.USR..图论及其应用[M]..北京:科学出版社,,1984....

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部