期刊文献+

度量测度空间中的拟极值距离域

Quasi-extremal Distance Domains in Metric Measure Spaces
下载PDF
导出
摘要 在度量测度空间中引进了拟极值距离域的概念 ,讨论了该区域的一些性质 .通过运用度量测度空间中曲线族的模、容器的容量以及测度论等工具 ,证明了所有的拟极值距离域都是拟凸和线性局部连通域 ,并且它的边界测度为零 ;得到了拟极值距离域上与测度和曲线的模有关的两个不等式 .从而得出结论 :在 Rn中 ,拟极值距离域许多性质的存在依赖于 Rn空间的正则性和连接任意两个不相交、非退化连续统的曲线族的模大于一个正常数这两个事实 . This paper introduced the concept of quasi extremal distance (QED) domains in metric measure spaces and discussed the properties of these domains. By applying the tools such as the modulus of curves. the capacity of condensers and the theory of measure in metric measure spaces, it proved that all QED domains are quasi convex and linear locally connected domains and that the measure of the boundaries of QED domains is zero. These properties are well known in R n. Moreover, this paper obtained two inequalities which are related to the measure and the modulus of curves on QED domains. According to the above geometric properties of QED domains in metric measure spaces, it can conclude that the existence of many properties of QED domains in R n is based on the regularity of R n and the fact that the modulus of curves joining two disjoint and non degenerate continua in R n is larger than a positive constant, but not on its other properties.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2001年第8期1256-1259,共4页 Journal of Shanghai Jiaotong University
基金 国家自然科学基金(19531060) 教育部博士点基金(97024811)资助项目
关键词 Loewner空间 Q-正则测度 拟极值距离域 线性局部连通域 拟凸域 复量测度空间 Loewner space Q regular measure quasi extremal distance domain linear locally connected domain quasi convex domain
  • 相关文献

参考文献12

  • 1[1]Heinonen J. A capacity estimate on Carnot groups[J]. Bull Sci Math Fr, 1995, 119: 473~484.
  • 2[2]Heinonen J, Koskela P. Quasiconformal maps in metric spaces with controlled geometry[J]. Acta Math, 1998, 181: 1~61.
  • 3[3]Heinonen J, Koskela P. From local to global in quasiconformal structures[J]. Proc Natl Acad Sci USA, 1996, 93: 554~556.
  • 4[4]Heinonen J, Koskela P. Definitions of quasiconformality[J]. Invent Math, 1995, 120: 61~79.
  • 5[5]Kor a′nyi A, Reimann H. Quasiconformal mappings on Heisenberg group[J]. Invent Math, 1985, 80: 309~338.
  • 6[6]Kor a′nyiyi A, Reimann H. Foundations for the theory of quasiconformal mappings on the Heisenberg group[J]. Adv in Math, 1995, 111: 1~87.
  • 7[7]Margulis G, Mostow G. The differential of quasiconformal mapping of a Carnot-Carathéodory space[J]. Geom Funct Anal, 1995, 5: 402~433.
  • 8[8]Tukia P, Visl J. Quasisymmetric embeddings of metric spaces[J]. Ann Acad Sci Fenn Ser A I Math, 1980, 5: 97~114.
  • 9[9]Visl J. Free quasiconformality in Banach space Ⅰ[J]. Ann Acad Sci Fenn Ser A I Math, 1990, 15: 355~379.
  • 10[10]Visl J. Free quasiconformality in Banach space Ⅱ[J]. Ann Acad Sci Fenn Ser A I Math, 1991, 16: 255~310.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部