摘要
刻画了弱逆半群S上的最大幂等元分离同余和最小群同余 .在此基础上 ,证明了S的群同余格与S的由主元所组成的逆半群I(S)的群同余格完备格同构 ;进而 ,证明了I(S)的群同余格是S的同余格的格同态像 .
In this paper, the greatest idempotent separating congruence and the minimum group congruence on a weakly inverse semigroup S are characterized. It is proved therefore that the lattice of group congruences on S is complete lattice isomorphic to the lattice of group congruences on I(S) , the inverse subsemigroup of principal elements of S . Moreover, the lattice of group congruences of S is also a lattice homomorphic image of the lattice of all congruences of S .
出处
《四川师范大学学报(自然科学版)》
CAS
CSCD
2001年第3期219-223,共5页
Journal of Sichuan Normal University(Natural Science)
基金
国家自然科学基金!( 196710 63 )
四川省教委重点科研基金资助项目
关键词
弱逆半群
群同余
最大幂等元分离同余
格同态
完备格同构
同余格
Weakly inverse semigroup
Group congruence
Greatest idempotent separating congruence
Lattice
Lattice homomorphism
Complete lattice isomorphism