期刊文献+

用矩阵的正定性判定多元函数极值的存在性 被引量:5

Determination on the Existence of Extremum in Multivariable Functions by the Positive Definiteness of Their Matrices
下载PDF
导出
摘要 本文提出了一种判断多元函数极值存在性的方法。用这种方法不仅能判断二元函数极值的存在性,而且能判断二元以上的函数极值的存在性,弥补了教材在这方面的不足,方法简便易学,便于掌握。 A method to determine the existence of extremum in multivariable functions is presented. With this method, not only in bivariate functions, but also in multivariable functions,can the existence of extremum be determined. The method is easy to learn and convenient to use.
作者 纪跃芝
出处 《吉林工学院学报(自然科学版)》 1995年第4期71-75,共5页 Journal of Jilin Institute of Technology
关键词 多元函数 极值 正定矩阵 存在性 判断方法 高等数学 multivariable function extremum positive definiteness matrix
  • 相关文献

同被引文献52

  • 1李大潜.将数学建模思想融入数学类主干课程[J].中国大学教学,2006(1):9-11. 被引量:470
  • 2同济大学数学系.高等数学(下册)[M].6版.北京:高等教育出版社,2007.
  • 3杨文茂,李全英.空间解析几何[M].武汉:武汉大学出版社,2004.
  • 4Arag6n-Correa J A. Strategic Proactivity and Finn Approach to the Natural Environment[J]. Academy of Management Journal,1998,41 (5) :556 -567.
  • 5Murillo-Luna J L, Gare6s-Ayerbe C, Rivem-Torres P. Barriers to the Adoption of Proaetive Environmental Strategies [ J ]. Journal of Cleaner Production, 2011,19 (13) : 1417 - 1425.
  • 6Cheng C C J, Yang C, Sheu C. The Link Between Eco-innovation and Business Performance: A Taiwan Residents Industry Context [ J ]. Journal of Cleaner Production, 2014, 64 : 81 -90.
  • 7Pigou A C. The Economics of Welfare [ M]. Beijing: Huaxia Publishing House, 2007.
  • 8Hart S L. Beyond Greening Strategies for a Sustainable World [ J ]. Harvard Business Review, 1997, (2) :67 -76.
  • 9Berry M A, Rondinelli DA. Proactive Corporate Environmental Management: A New Industrial Revolution [ J ]. Academy of Management Executive, 1998, 12 (2) :38 - 50.
  • 10Przychodzen J, przychodzen W. Relationships Between Eco- innovation and Financial Performance Evidence From Publicly Traded Companies in Poland and Hungary [ J ]. Journal of Cleaner Production, 2014, 90:253 - 263.

引证文献5

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部