摘要
讨论了一维稳态和发展型Ginzburg Landau(缩写为G L)超导方程组 ,从数学上论证了常稳态解的不稳定性及无穷维动力系统在行波解意义下的极限集之存在性 .指出G L超导方程组描述的超导材料具有作者意义下的无穷维动力系统的混沌现象 。
One-dimensional steady state and evolutionary Ginzburg-Landau equations for superconductivity is disussed. Instability of constant steady state solutions and the existence of limit sets of infinite-dimensional dynamic system are proved. Using the author's definition of chaos for finite-and infinite-dimensional dynamic systems, we conclude that superconductors governed by GL equations possess chaotic phenomena. Therefore strange phenomena may occur in conducting. The theoretical results indicate that it is advisable to improve the design of experiments or try to find new structures of superconductors in future research to suppress the chaotic behavior.
出处
《物理学报》
SCIE
EI
CAS
CSCD
北大核心
2001年第8期1596-1599,共4页
Acta Physica Sinica
基金
上海市教育委员会发展基金 (批准号 :2 0 0 0A10 )资助的课题&&