摘要
本文讨论凸曲面的无穷小Ⅱ-等距的变形问题,在某些较弱的(Gauss曲率结合)条件下,推出了有关的一些定理。著名的K.VOSS定理是本文主要定理的特例。
In this paper,we try to discuss the conjecture—'An infinitesimal Ⅱ—isometry of surface is infinitesimal Ⅰ—isometry. 'Under some weak suppositions of Gauss curvature, some results are worked out. K. Voss' s theorem is a consequence of theorem 1 in this paper.
出处
《江西师范大学学报(自然科学版)》
CAS
1991年第1期16-21,共6页
Journal of Jiangxi Normal University(Natural Science Edition)
关键词
凸曲面
无穷小Ⅱ等距
无穷小
刚体
convex surfaces
infinitesimal Ⅱ-isometry
infinitesimal rigid body