摘要
Sandomierski F.L,Small L.W,和 Fields K.L.[1-2]在“幂零”条件下研究了环与约化环的同调维数.然而对一些环(如交换 Von Neumann正则环),“幂零’的条件是不成立的.因此,在本文中我们考虑非“幂零”条件下(如R(R/I)((R/I)R)是R-投身的或R(R/I)R是R-平坦的),环与约化环的同调维数.
The authors of Sandomierski F. L., Small L. W., Fields K. L.[1-3] studied homological dimensions of rings and residuce rings under 'nilpotent' conditions. But, for some rings (for example, R is a commutative Von Neuman regular ring) the 'nilpo- tent' conditions don't hold. Hence, in this paper, we consider homological dimensions of rings and residuce rings under 'no-nilpotent' conditions such as R(R/t)((R/I)R) is R-projective of R(R/I)R is R-flat.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2001年第5期777-784,共8页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金资助项目(19771046)