期刊文献+

环与剩余类环的同调维数

On Homological Dimensions of Rings and Residue Rings
原文传递
导出
摘要 Sandomierski F.L,Small L.W,和 Fields K.L.[1-2]在“幂零”条件下研究了环与约化环的同调维数.然而对一些环(如交换 Von Neumann正则环),“幂零’的条件是不成立的.因此,在本文中我们考虑非“幂零”条件下(如R(R/I)((R/I)R)是R-投身的或R(R/I)R是R-平坦的),环与约化环的同调维数. The authors of Sandomierski F. L., Small L. W., Fields K. L.[1-3] studied homological dimensions of rings and residuce rings under 'nilpotent' conditions. But, for some rings (for example, R is a commutative Von Neuman regular ring) the 'nilpo- tent' conditions don't hold. Hence, in this paper, we consider homological dimensions of rings and residuce rings under 'no-nilpotent' conditions such as R(R/t)((R/I)R) is R-projective of R(R/I)R is R-flat.
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2001年第5期777-784,共8页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金资助项目(19771046)
关键词 同调维数 投射 平坦 约化环 剩余类环 幂零 Homological dimension Projective Flat Residue ring
  • 相关文献

参考文献8

  • 1[1]Sandomierski F. L., Homological Dimension Under Change of Rings [J], Math. Z., 1973, 130: 55-65.
  • 2[2]Small L. W., A Change of Rings Theorem [J], Proc. Amer. Math. Soc., 1968, 19: 662-666.
  • 3[3]Fields K. L., On the Global Dimension of Residue Rings [J], J. Math., 1970, 32(2): 345-349.
  • 4[4]Xu Jinzhong, Simple Modules over a Commutative Ring [J], Comm. in Algebra, 1991, 19(2): 535-537.
  • 5[5]Rotman J. J., An Introductions to Homological Algebra [M], New York-San Francisco-London: Academic Press, 1979.
  • 6[6]Boratynski M., A Change of Rings Theorem and the Artin-Rees Property [J], Proc. Amer. Math. Soc.,1975, 53: 307-310.
  • 7[7]Anderson F. W., Fuller K. W., Rings and Categories of Modules [M], Graduate Text in Math., SpringerVerlag, 1974.
  • 8[8]Josaph C. Thome, Homological Dimension under Change of Rings [J], Comm. in Algebra, 1979, 7(6):625-640.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部