期刊文献+

动脉血管流动计算的伽辽金有限元法研究 被引量:4

Finite Element Galerkin Approach for a Computational Study of Arterial Flow
下载PDF
导出
摘要 得到大动脉三维模型的过二重分叉的二维截定常流的NS方程有限元解· 采用了物理坐标系变换到曲线边界贴体坐标系的数学技巧· 以支流至主动脉流率为参数 ,计算了雷诺数为 10 0 0的壁面切应力· 所得结果与前人的工作 (包括实验数据 )进行了比较 ,发现与他们的结果非常接近 ,改进了Sharma和Kapoor(1995 )的工作 ,相比之下 ,所用的数值方法上更经济 ,适用的雷诺数更大· A finite element solution for the Navier_Stokes equations for steady flow through a double branched two dimensional section of three dimensional model of canine aorta is obtained. The numerical technique involves transformation of the physical coordinates to a curvilinear boundary fitted coordinate system. The shear stress at the wall is calculated for Reynolds number of 1000 with branch to main aortic flow rate ratio as a parameter. The results are compared with earlier works involving experimental data and it is observed that the results are very close to their solutions. This work in fact is an improvement of the work of Sharma and Kapoor (1995) in the sense that computations scheme is economic and Renolds number is large.
出处 《应用数学和力学》 EI CSCD 北大核心 2001年第9期911-917,共7页 Applied Mathematics and Mechanics
基金 新德里CSIR资助项目 (2 5 / 98/ 97-EMR-Ⅱ )
关键词 切应力 血液流动 伽辽金法 血液流动 二维截定常流 有限元法 数值方法 N-S方程 shear stress blood flow arterial flow Galerkin approach
  • 相关文献

参考文献2

  • 1Ku N,Annual Review of Fluid Mechanics,1997年,29卷,399页
  • 2Lutz R J,The 74th Annual AICHE,1981年

同被引文献111

  • 1M.Grigioni,C.Daniele.G.D'Avenio and V.Barbaro.On the monodimensional approach to the estimation of the highest Reynoldsshear stress in a turbulent flow[J]. J. Biomech, 2000.33(6):701-708.
  • 2J.A.Moore,D.A.Steinman and C.R.Ethier.computational blood flow modelling:Errors associated with reconstructing finite element models from magnetic[J].J.Biomech.1997,31(2):179-184
  • 3B.Couteau. Y.Payan and S.Lavallée. The mesh-matching algorithm:an automatic 3D mesh generator for finite element structures[J].J.Biomech.2000.33(8): 1005-1009.
  • 4J,R.Cebral, R.L?hner. P.L.Choyke and P.J.Yim.Merging of intersetting triangulations for finite element modeling[J].J.Biomech,2001.34(6):815-819.
  • 5D.A.Steinman.Simulated pathline visualization of computed periodio blood flow patterns[J].J.Biomech,2000,33(5):623-628
  • 6F.Etave,G.Finet,M.Boivin,J.C.Boyer,G.Rioofol and G.Thollet.Mechanieal properties of coronary stents determined by using finite element analysis[J].J.Biomech.2001,34(8):1065-1075
  • 7M.H.Friedman and Zhaohna Ding. Relation between the structural asymmetry of coronary branch vessels and the angle at their-oritgin[J]. J. Bimnech. 1997,31(3):273-278.
  • 8L. Kornet,A.P.G.Hoeks,J.Lambregts and R.S.Reneman.In the Femoral Artery Bifureation.Differences in Mean Wall Shear Stress Within Subjects Are Associated With Different Intima-Media Thicknesses[J].Arteriosclerosis Thrombosis and Vascular Biology.1999,19(12):2933-2939
  • 9D. Lee and J.Y.Chen. Numerical simulation of flow fields in a tube with two branches[J].J.Biomech.2000,33(10):1305-1312
  • 10J.M.Reese and D.S.Thompson.Shear stress in stenoses:a momenturn integral model[J].J.Biomech.1998,31(11):1051-1057

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部