摘要
复亚半正定矩阵是 Hermite正定阵的推广 ,研究了它的 Kronecker积、Hadamard积和行列式理论 ,将实对称阵的 Schur定理、华罗庚定理、Minkowski不等式、Ky-Fan不等式、Ostrowski-Taussky不等式推广到了一类非 Hermite复矩阵上 ,扩大了 Minkowski不等式的指数范围 ,削弱了华罗庚不等式的条件 .
The complex metapositive semidefinite matrix is He rmite metapositive semidefinite matrix of generalize, and its Kronecker product and Hadamard product and determinant theories are discussed, and generalizes Sch ur theorem, Hua Luo-geng theorem, Minkowski inequality, Ky-Fan inequality and Ostrowski-Taussky inequality of real symmetric matrix to compound matrix of one kind of non-Hermite, and the index scope of Minkowski inequality is enlarged, the condition of Hua Luo-geng inequality has been weakened.
出处
《工科数学》
2001年第4期32-37,共6页
Journal of Mathematics For Technology
基金
重庆市教委科学基金资助项目 (981 0 0 2 )