期刊文献+

模式变换与前向网络训练

Pattern Transformation for Training of Feedforward Neural Networks
下载PDF
导出
摘要 前向网络在用于模式分类时 ,其网络的有效训练一直是一个受到关注的问题。本文首先提出模式的可逆线性变换不改变网络的结构 ,而组成可逆线性变换的错切变换会在一定程度上改变网络训练的难度 ,从而提出了对模式进行适当错切变换可以有效改变网络训练难度提高网络训练效率的方法。文末对所提出方法的实验结果也证明了这一点。 It has payed great attention to effective training of feedforward neural networks when they are used for pattern classification. This paper deals with the structure invariance of the network when the reversible linear transformation is conducted on it. It is shown that the cutting transform, which is a kind of reversible linear transform, can decrease the training difficulty of the network, and then could be used as an effective method for improving the training speed of the network. Finally, an experimental result is presented indicating that the method presented here is effective.
出处 《计算机仿真》 CSCD 2001年第3期1-3,共3页 Computer Simulation
基金 国家自然科学基金!资助 (No .6 0 0 710 2 6 ) 国防科技预研跨行业基金!资助 (No .0 0J1.4.4.DZ0 10 6 ) 图象信息处理与智能控制国
关键词 可逆线性变换 模式分类 模式识别 模式变换 人工神经网络 网络训练 Reversible linear trainsform Patter classification Classification difficulty of the network
  • 相关文献

参考文献6

  • 1[1]Rumelhart D,McClelland J.Parallel Distributed Processing:Explorati ons in the Microstructure of Cognition,Vols.1&2,Cambridge:Bradford Books/MIT,197 9
  • 2[2]Funahashi K.On the Approximate Realization of Continuous Mappings by Neural Networks,Neural Networks,1989(2):182~192
  • 3[3]Cybenko G.Approximation by Superpositions of a Sigmoidal Function, Mathematics of Control,Signals and Systems,1989(2):303~314
  • 4[4]Hornik K,Stinchcombe M,White H.Multilayer Feedforward Networks,Neu ral Networks,1991(4):251~257
  • 5[5]S S Keerhi, S K Shevade, etc. A Fast Iterative Nearest Point Algor ith for Support Vector Machine Classifier Design, IEEE trans. on Neural Networks , Vol.11, No.1, 2000
  • 6[6]Mikko Lehtokangas, Modified Cascade-Correlation Learning for Class ification, IEEE trans. on Nueral Networks, Vol.11, No.3, 2000

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部