摘要
考虑非自治平方 L ogistic模型 Δxn=rnxn(1- bxn- kn- cxn- kn2 ) ,n=0 ,1,2… ,其中 { rn}为非负实数列 ,b≥ 0 ,c>0 ,{ kn}是非负整数列 ,{ n- kn}非单调递减 ,且 limn→∞(n- kn) =∞ ,给出了保证其每一正解 { xn}满足 limn→∞xn=x的一族充分条件 (其中 x是正平衡点 ) 。
Consider the nonautonomous square logistic model Δx n=r nx n(1-bx n-k n -cx n-k n 2) n =0,1,2,…,where {r n} is a sequence of nonnegative real numbers; b≥0,c≥0,{k n} is a sequence of nonnegative integers; {n-k n} is nondercreasing;lim n→∞(n-k n)=∞ .We obtain the sufficient conditions that guarantees every positive solution of the equation to tend to the positive equilibrium.Our results improve some recent results and solve an open research project.
出处
《湖南农业大学学报(自然科学版)》
CAS
CSCD
北大核心
2001年第3期227-230,共4页
Journal of Hunan Agricultural University(Natural Sciences)
基金
湖南省教育厅科研基金资助项目 (99C12 )