期刊文献+

CS_2^+_g^2的(1+1)光解离动力学研究 被引量:1

Photodissociation of CS_2^+(~2∏_g) via (1+1) Excitation
下载PDF
导出
摘要 在气束条件下 ,利用 4 83.2nm的激光 (3+ 1)共振增强多光子电离 (REMPI)CS2 分子以产生CS2 +离子源 ,用另一束可调谐激光在 4 2 4~ 4 82nm内 ,通过对CS2 +( X2 Πg) (1+ 1)双光子共振解离产生的碎片离子激发谱的探测 ,来获取CS2 +的光解离动力学信息。光解离碎片S+的激发谱(PHOFEX)可归属为CS2 +( A2 Πu,3/2 (v′ =0~ 4 ,v′ =v1′ + (1/ 2 )v2 ′)← X2 Πg ,3/2 (0 ,0 ,0 ) )和 ( A2 Πu,1/2 (v′ =0~ 4 )← X2 Πg ,1/2 (0 ,0 ,0 ) )的跃迁。对CS2 +光解离动力学的研究表明 ,其产生S+的通道为 :(i)CS2 +吸收一个光子从基态 X2 Πg 共振激发至 A2 Πu 态 ,(ii)已布居的 A2 Πu 态的振动能级和 X2 Πg 态的高振动能级产生耦合 ,(iii)吸收第二个光子从上述耦合的振动能级进一步激发至 B2 Σu+态 ,再通过 B2 Σu+态与4 Σ- 态间的自旋 -轨道相互作用 ,经由4 Σ- 排斥态解离产生S++CS。 Photodissociation dynamics of CS 2 + molecular ions has been investigated by (1+1) two photon resonance technique. CS 2 + were prepared by (3+1) resonance enhanced multi photon ionization(REMPI) of CS 2 molecules at 483.2nm. The photofragment S + excitation(PHOFEX) spectra were recorded by scanning another laser in the 424~482nm region, and were assigned essentially to CS 2 +( 2Π u,3/2 ( v ′=0~4)← 2Π g,3/2 (0,0,0)) and ( 2Π u,1/2 ( v ′=0~4)← 2Π g,1/2 (0,0,0)) (here v′=v 1′+(1/2)v 2′ ) transitions. The S + production channel was preliminarily attributed to, (i) one-photon excitation CS 2 + from the ground state 2Π g to the excited state 2Π u; (ii) vibronic coupling between the 2Π u state and the high vibrational levels in the 2Π g state; (iii) second photon excitation from the coupling vibrational levels to the excited state 2Σ u + and dissociation to produce S ++ CS via the repulsive 4Σ - state through spin-orbit interaction between the 2Σ u + and 4Σ - states.
出处 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 北大核心 2001年第4期389-396,共8页 化学物理学报(英文)
基金 95攀登计划"分子反应动力学和原子分子激发态" 国家自然科学基金 (2 98730 4 7) NKBRSF研究(G1990 75 30 4 )资助项目&&
关键词 CS2^+ 光解离 光碎片激发 动力学 二硫化碳 大气化学 大气物理学 CS 2 +, Photodissociation, Photofragment excitation
  • 相关文献

参考文献2

二级参考文献3

  • 1Zhang L M,Chem Phys Lett,1996年,259卷,403页
  • 2Chuns S,J Chem Phys,1994年,100卷,3514页
  • 3马无骝,物理化学学报,1987年,3卷,385页

共引文献2

同被引文献18

  • 1Douglas A E. J.Chem.Phys., 1966, 45: 1007
  • 2Gutsev G L, Bartlett R J. J.Chem.Phys., 1998, 108: 6756
  • 3Bahou M, Lee Y C, Lee Y P. J.Am.Chem.Soc., 2000, 122: 661
  • 4Mckee M L, Wine P H. J.Am.Chem.Soc., 2001, 123: 2344
  • 5Brasen G, Leidecker M, Emtroder W D. J.Chem.Phys., 1998, 109: 2779
  • 6Zhang Q G, Vaccargo P H. J.Phys.Chem., 1995, 99: 1799
  • 7Lo W J, Lee Y P. Chem.Phys.Lett., 2001, 336: 71
  • 8Kolbuszewski M, Bunker P R, Jensen P.J.Mol.Spectrosc., 1995, 170: 158
  • 9Bernath P F, Dulick M, Field R W, Hardwick J L. J.Mol.Spectrosc., 1981, 86: 275
  • 10Blanquet G, Baeten E, Cauuet I, Walrand J, Courtoy C P. J.Mol.Spectrosc., 1985, 112: 55

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部