期刊文献+

势阱中粒子能级与波函数微扰计算的代数递推公式 被引量:3

Algebraic Recursion Formulas for Perturbation Calculation of Energy Levels and Wave Functions in Potential Wells
下载PDF
导出
摘要 利用超位力定理 (HVT)和Hellmann -Feynman定理 (HFT) ,导出了由有精确解的势阱的能级值用微扰法直接计算一维势阱的各级近似能级的普遍代数公式 ,并导出了由能级近似值计算定态波函数近似表达式的代数公式。给出了代数公式具体应用的几个典型一维势阱实例。 Using hypervirial theorem (HVT) and Hellmann-Feynman theorem (HFT), perturbation calculation of successive order approximate values of energy levels in a potential well with power series expansion of the potential energy are processed. Algebraic recursion formulas for calculating energy levels are deduced. We use the exact energy levels for parabolic potential well (one dimensional harmonic oscillator) as zero order approximation, and derive algebraic formulas for successive order approximate energy levels for given potential energy function. The corresponding wave functions can then be written as polynomials in which coefficients are expressed in terms of the energy levels and coefficients in the power series of potential energy. In this way, tedious and cumbersome perturbation calculations in Rayleigh-Schrdinger perturbation method are avoided. Thus the present method is simple, efficient and time saving. Typical examples are illustrated with the algebraic formulas, including: energy levels for Gaussian potential well; for modified Pschel-Teller well; potential wells for anharmonic oscillators; Morse potential for vibrational energy levels of diatomic molecules and modified Morse potential for vibrational-rotational energy levels. Formulas for calculation of wave functions corresponding to calculated energy levels are given for anharmonic oscillators and for symmetric potential energy functions. The present method can be extended to two or three dimensional potential well, and can also be used in other mathematically analogous eigenvalue problem.
出处 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 北大核心 2001年第4期403-413,共11页 化学物理学报(英文)
基金 北方交通大学科技论文基金资助&&
关键词 粒子能级 波函数 微扰方法 代数递推公式 势阱 量子力学 Energy levels, Wave function, Perturbation theory, Algebraic recursion formulas
  • 相关文献

参考文献2

二级参考文献4

共引文献4

同被引文献14

  • 1陈世杰,吴柳.多项式势阱中粒子能级的微扰计算[J].大学物理,2005,24(3):11-14. 被引量:2
  • 2曾谨言.量子力学[M].北京:科学出版社,2001..
  • 3Scherer W. Superconvergent Pertubation Method in Quantum Mechanics [J]. Phys Rev Lett, 1995,74 : 1 495.
  • 4Swenson R J, Danforth S H. Hypervirlal and Hellmann - Feynman Theorems Applied to Anharmonic Oscillators [J]. J Chem Phys,1972,57:1 734.
  • 5曾谨言.量子力学:卷Ⅰ[M].北京:科学出版社,2001.
  • 6Joseph O. Classical and Quantum Mechanical Hypervirial Theorems [J]. J Chem Phys, 1960,33 : 1 462.
  • 7Liolios Th E. Algebraic and numerical manipulation of the even - power - series central potentials by means of the Hypervirial Theorems technique[J]. Computer Physics Commuications, 1997,105:254-262.
  • 8方俊鑫,陆栋.固体物理学[M].上海:科学技术出版社,1980.
  • 9Scherer W.Superconvergent pertubation method in quantum mechanics[J].Phys Rev Lett,1995,74:1495.
  • 10Swenson R J,Danforth S H.Hypervirial and hellmann-feynman theorems applied to anharmonic oscillators[J].J Chem Phys,1972,57:1734.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部