摘要
研究了应用人工神经网络进行粉末药品的非破坏定量分析。使用扑热息痛粉末药品的近红外漫反射光谱数据建立人工神经网络模型 ,预测未知样品。讨论了影响网络的各参数。采用逼近度作为网络新的评价标准。由于人工神经网络好的非线性的多变量校正特点 ,预测结果是准确的。
The application of artificial neural network for pharmaceutical nondestructive quantitative analysis were investigated. Real data set from near infrared reflectance spectra of Paracetamoli powder pharmaceutical were used to build up artificial network to predict unknown samples. The parameters affecting network were discussed. A new network evaluation criterion, the degree of approximation, was employed. Owing to good nonlinear multivariate calibration nature of ANN, the predicted results was reliable.
出处
《光谱学与光谱分析》
SCIE
EI
CAS
CSCD
北大核心
2001年第4期521-523,共3页
Spectroscopy and Spectral Analysis
关键词
人工神经网络
药物分析
近红外光谱
逼近度
扑热息痛
非破坏分析
定量分析
artificial neural network (ANN)
near infrared spectrophotometry
degree of approximation
paracetamoli nondestractive analysis