摘要
根据结焦沸石催化剂烧焦再生数学模型为二阶非线性偏微分方程的特点 ,提出采用正交配置方法进行方程离散 ;对离散得到的病态非线性常微分方程组 ,经过比较 ,采用显式变步长龙格 库塔法进行求解 ,从而避免了计算Jacobi矩阵和其逆矩阵 ,提高了计算精度和计算速度。对比表明 ,该模型的结果与文献数据和实验数据比较吻合 ,具有一定的可靠性和准确性 。
According to the characteristics of the mathematical model for coked catalyst regeneration which are two order non linear partial differential equations,using the orthogonal collocation method to discrete the equations and using the explicit Runge Katta method with a varied step length to resolve the obtained ill conditions non linear constant differential equations,calculations for Jacobi matrix and its inverse matrix can be avoided,the precision and rate of the calculation enhanced.The results of these models were in accordance with the experimental data and have considerable reliability and accuracy.
出处
《炼油设计》
北大核心
2001年第6期11-14,共4页
Petroleum Refinery Engineering
基金
国家自然科学基金 (2 0 0 760 18)
国家重点基础研究发展规划项目 (G2 0 0 0 0 2 63 )资助项目
关键词
催化裂化
催化剂再生
数学模型
微分方程式
结焦
炼油
catalytic cracking,catalyst,regeneration,mathematical model,partial differential equation