期刊文献+

主元素分析方法在地震勘探中的应用 被引量:3

Application of principal component analysis to seismic prospecting.
下载PDF
导出
摘要 利用熟知的主元素理论 ,以K -L变换为数学基础 ,给出了本征结构分析的几何解释 ,研究了该数学方法在数据处理中的实际意义。在主元素空间通过对本征值进行分组 ,由重建过程将构造背景和异常区域以及信号噪音分离开来 ,从而为构造运动及古地理环境的分析提供依据。在算法实现上采用滑动窗口的模式 ,获得了应用K -L变换进行信号去噪的快速算法 ,同时可以将噪音作进一步分析研究 。 With the well known principal element theory and on the mathematical basis of K-L transformation, this paper studies in depth the practical significance of principal element theory to data processing and presents the geometric interpretation of eigenstructure analysis. The structural setting, abnormal regions, signals as well as noises can be separated through a reconstruction process by grouping eigenvalues into different classes in the principal element space. The obtained results can provide basis for analysis of tectonic movement and palaeogeographic environment. A fast algorithm for noise suppression with K-L transformation has been derived from the use of moving window during the implementation of method. At the same time, the study of noises can further be carried out to provide basis for evaluation of data quality.
出处 《石油物探》 EI CSCD 2001年第3期23-28,共6页 Geophysical Prospecting For Petroleum
关键词 主元素分析方法 K-L变换 协方差矩阵 本征向量 信噪比 地震勘探 principal component analysis, K-L transformation, covariance matrix, eigenvector, signal to noise ratio
  • 相关文献

参考文献1

二级参考文献3

共引文献13

同被引文献18

  • 1Yano, M, Homma, N., Sakai, M., Abe, K., Phase-space reconstruction from observed time series using Lyapunov spectrum analysis, SICE 2002. Proceedings of the 41^st SICE Annual Conference, Volume: 2, 5-7 Aug. 2002 Page(s): 701-706 vol.2.
  • 2Bakker, R., Schouten, J.C., Coppens, M.-O.; Takens, E;van den Bleek, C.M.; Chaotic attractor learning and how to deal with nonlinear singularities, Adaptive Systems for Signal Processing, Communications, and Control Sym-posium 2000. AS-SPCC. The IEEE 2000, 1-4 Oct.2000 Page(s): 466-470.
  • 3Sekhavat, P.; Sepehri, N.; Wu, Q.; Contact task stability analysis via Lyapunov exponents Intelligent Control,2002. Proceedings of the 2002 IEEE Intematinal Symposium on, 27-30 Oct. 2002 Page(s): 148-153.
  • 4YANO M, HOMMA N, SAKAI M. Phase-space reconstruction from observed time series using Lyapunov spectrum analysis[J]. SICE Annual Conference,2002, (2): 5-7.
  • 5Lyapunov A. On completely additive vector functions[J]. Bull. Acad. Sci USSR, 1940,4:465-478.
  • 6Wolf Alan,Swift J B,Swinney H L,et al. Determining lyapunov exponents from a time series [J]. Physica 16D, 1985,285-317.
  • 7Lorenz E. Deterministic non-periodic flow[J]. Journal of Atmospheric Sciences, 1963,20:130-41.
  • 8Gulic D. Encounters with Chaos [M]. New York: No Graw-Hill ,Inc. 1992. 275-284.
  • 9Fukunaga K, Koontz W L G. Applications of the Karhunen-Loeve expansion to feature selection and ordering [J]. IEEE Transactions on Computers C-19,1970:917-923.
  • 10高俊,刘孝贤,孙国霞.信号与线性系统分析[M].济南:山东大学出版社,2001,8:132—148.

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部