摘要
设是A=(α_(ij))_(i,j=1)~n是一个可对称化的广义Cartan矩阵,(η,π,π~v)是A的一个实现,其中π={α_1,…,α_n};π~v={α_1~v,…,α_n^v}。设(A)是结合于A的Kac-Moody代数,{e_i,f_i|1≤i≤n}是(A)的Chevalley生成员的集合。P={λ∈η~*|<λ,α_i^v>∈Z,1≤i≤n}
出处
《科学通报》
EI
CAS
CSCD
北大核心
1991年第24期1844-1846,共3页
Chinese Science Bulletin